Relative perturbation theory for hyperbolic singular value problem
نویسندگان
چکیده
منابع مشابه
Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations∗
The classical perturbation theory for Hermitian matrix eigenvalue and singular value problems provides bounds on the absolute differences between approximate eigenvalues (singular values) and the true eigenvalues (singular values) of a matrix. These bounds may be bad news for small eigenvalues (singular values), which thereby suffer worse relative uncertainty than large ones. However, there are...
متن کاملRelative Perturbation Theory: II. Eigenspace and Singular Subspace Variations
The classical perturbation theory for Hermitian matrix eigenvalue and singular value problems provides bounds on invariant subspace variations that are proportional to the reciprocals of absolute gaps between subsets of spectra or subsets of singular values. These bounds may be bad news for invariant subspaces corresponding to clustered eigenvalues or clustered singular values of much smaller m...
متن کاملSingular perturbation theory
When we apply the steady-state approximation (SSA) in chemical kinetics, we typically argue that some of the intermediates are highly reactive, so that they are removed as fast as they are made. We then set the corresponding rates of change to zero. What we are saying is not that these rates are identically zero, of course, but that they are much smaller than the other rates of reaction. The st...
متن کاملA Schrödinger singular perturbation problem
Consider the equation −ε∆uε + q(x)uε = f(uε) in R3, |u(∞)| < ∞, ε = const > 0. Under what assumptions on q(x) and f(u) can one prove that the solution uε exists and limε→0 uε = u(x), where u(x) solves the limiting problem q(x)u = f(u)? These are the questions discussed in the paper.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00464-0